Sunday, May 20, 2012


    
თემა   ლოგარითმული ფუნქცია    
მიზნები მოსწავლე
  •  გაეცნოს  ლოგარითმულ ფუნქციას, როგორც მაჩვენებლიანი ფუნქციის შექცეულ ფუნქციას.
  •   შეძლოს ფუნქციის გამოკვლევა ლოგარითმული ფუნქციის მაგალითზე.
  • მოახდინოს ფუნქციის თვისებების,  გარფიკის წანაცვლების ანალიზი და კვლევა "GeoGebra"-ში სიმულაციების გამოყენებით.
შედეგები, ესგ-სთნ შესაბამისობა
  • მათ. XI.6 მოსწავლეს შეუძლია გრაფიკული, ალგებრული მეთოდებისა და ტექნოლოგიების გამოყენება ფუნქციის/ფუნქციათა ოჯახის თვისებების შესასწავლად.
    შედეგი თვალსაჩინოა, თუ მოსწავლე:
    • იყენებს ფუნქციის გრაფიკის გეომეტრიულ ნიშნებს (მაგალითად, საკოორდინატო ღერძის პარალელური წრფის მიმართ სიმეტრიულობა, კოორდინატთა სათავის მიმართ ცენტრულად სიმეტრიულობა, პარალელური გადატანის მიმართ ინვარიანტულობა) ფუნქციის თვისებების დასადგენად;
    • იყენებს შესაფერის გრაფიკულ, ალგებრულ მეთოდებს ან ტექნოლოგიებს ( ლოგარითმული) ფუნქციის ისეთი თვისებების დასადგენად, როგორიცაა: ზრდადობა/კლებადობა, ნიშანმუდმივობა, პერიოდულობა/პერიოდი, ფესვები, ექსტრემუმები;
    • აღწერს თუ რა გავლენას ახდენს ფუნქციის პარამეტრების ცვლილება ფუნქციის გრაფიკზე.

    ისტ-ის  შეფასების კრიტერიუმები  და მათი მიღწევის დონეები   -  IV დონე
  • მოსწავლე იყენებს ისტ-ზე დაფუძნებულ მოდელებს და სიმულაციებს კანონზომიერებებისა და კავშირების კვლევისას, აკეთებს პროგნოზს, ამოწმებს / ასაბუთებს ჰიპოთეზებს.
აქტივობები1 აქტივობა: მასწავლებელი აცნობს მოსწავლეებს გაკვეთილის მიზნებს და მიმდინარეობას.

2. აქტივობა: გონებრივი იერიში.
დაფაზე ჩნდება მასწავლებლის მიერ მომზადებული რამდენიმე ფუნქციის გრაფიკი.
კითხვა: გავიხსენოთ რომელი ფუნქციის გრაფიკებს ხედავთ?
მოკლედ დაახასიათეთ. 
რომელ გრაფიკებს დააკავშირებდით და რატომ?
სავარაუდოდ ბოლო შეკითხვაზე პასუხი შეიძლება იყოს  მრავალგვარი(მონოტონურობის მიხედვით, ნულების მიხედვით და ა. შ.), თუმცა გრაფიკების დაწყვილება ურთიერთშექცევადობის პრინციპით აუცილებლად ითქმევა. სწორედ ამაზე მახვილდება ყურადღება. მოსწავლეებს გავახსენებთ ურთიერთშექცეული ფუნქციების განლაგებას y=x წრფის მიმართ. და რადგან მაჩვენებლიანი ფუნქციის გრაფიკი რჩება დასაწყვილებელი, ჩვენ ვიწყებთ საუბარს მის შექცეულ ფუნქციაზე.

3. აქტივობა: ლოგარითმის ცნების შემოტანა. ვუხსნით მოსწავლეებს რას ნიშნავს "ლოგარითმი a-ს ფუძით x "
 "GeoGebra"-ში ვაგებთ ჯერ  მაჩვენებლიანი, შემდეგ ლოგარითმული ფუნქციის გრაფიკებს. ა) როცა a>1     ბ) როცა 0<a<1
მთელ კლასთან ერთად გამოვიკვლევთ ფუნქციას.

4. აქტივობა: ცალკე გამოვყობთ ათობით და ნატურალურ ლოგარითმს. დაფაზე ვაგებთ ნატურალურ ლოგარითმა და ვუჩვენებთ მის თვისებას , მხების 45 გრადუსიანი კუთხით დახრილობის შესახებ.

5. აქტივობა: მოსწავლეებს სიმულაციური  პროგრამის საშუალებით ვუჩვენებთ, თუ რა ტიპის წანაცვლებები და სიმეტრიული გარდაქმნები შეიძლება გამოიწვიოს პარამეტრების ცვლილებამ.
დაფასთან აგებენ ჯერ მასწავლებლის მიერ მიცემული ფუნქციის გრაფიკს, ხოლო შემდეგ თავად ასრულებენ პარალელურ გადატანასა და სიმეტრიის კომპოზიციას და მსჯელობენ მიღებული გრაფიკის შესაბამის ფუნქციაზე.

6 აქტივობა: დავალება წყვილებში.
მოსწავლეებს ურიგდებათ წინასწარ გამზადებული ტესტის ბარათები.
დრო 3 წთ.
შესრულებული დავალება გადაეცემა შემოწმებისათვის მომდევნოდ მჯდარ წყვილს.
დაფასთან განიხილება ის ტესტი, რომელიც გამოიწვევს აზრთა სხვადასხვაობას.

7. გაკვეთილის შეჯამება და მოსწავლეთა შეფასება

8. დავალება ჩნდება ეკრანზე. მასწავლებელი აძლევს მოკლე კომენტარს.



შეფასება შეფასდება ფუნქციის გამოკვლევის უნარი. ფუნქციის აგებისა და პარამეტრების ცვლილების მიხედვით წანაცვლების უნარი.
შეფასდება წყვილებში შერულებული სამუშაო.
შეფასება მოხდება განმავითარებელი კომენტარებით
რესურსებიკომპიუტერი, "Smartboard"ი, პროგრამა  "GeoGebra" , პრეზენტაცია, დავალების ბარათები.
კომენტარი



No comments:

Post a Comment